
- Software Testing Plan -
Version 1

April 5, 2024

- Team Members -
Nile Roth

Niklas Kariniemi
Zachariah Derrick

Asa Henry

- Sponsored by -
Prof. Andrew Richardson, SICCS/ECOSS

Prof. Mariah Carbone, ECOSS
Prof. George Koch, ECOSS
Austin Simonpietri, ECOSS

- Team Mentor -
Tayyaba Shaheen



Table of Contents

Table of Contents 2
Introduction 3
Unit Testing 4
Integration Testing 8
Usability Testing 11
Conclusion 16



Introduction

The DendroDawgz team is devoted to easing the process of obtaining and analyzing
dendrometer data in order to support research projects around the world. Our long-term goal is to
increase the overall flow of dendrometer data, leading to an improvement of the contributions of
tree research. We have successfully created an alpha version of our application DendroDoggie
with the ability to accurately perform all of our core modules. These include reading in data from
the dendrometer, merging csv files, visualizing single and merged data files, and exporting data
to the cloud. Before a final version release, we must run these processes through a series of tests
to confirm their full functionality. There are three different types of tests to be performed on our
application: Unit, Integration, and Usability testing. Unit testing relates to the actual testing of
code and its outputs. We plan to run unit tests with JUnit on the most critical java files in our
system. Integration testing involves ensuring that data is seamlessly transported throughout the
application. This type of testing is important for our application because of its prevalence when
switching between our application’s multiple views. Lastly we have usability testing, which will
be very useful for improving our user interface and user-friendliness. This process will involve
having our clients complete a series of basic tasks inside the application. We are mainly looking
to obtain feedback about the intuitiveness of our front-end, so that we can improve upon features
of our app that may be difficult for new users to understand or reenact. The structured
approaches described will ultimately lead to a more robust and user-friendly application. In the
following sections, we delve into each testing area in detail, outlining specific test cases,
methodologies, and expected outcomes.



Unit Testing

Unit testing is a strategy which picks crucial functionality in a software system to test.
The tests can be run any time, but are generally run before code makes its way to end users. Unit
tests are written to provide a benchmark for the system; this is useful when fixing bugs and
adding new features because pieces of the software can be changed which could affect other
pieces. By having a collection of tests to verify the software is producing expected results and to
verify the software can handle edge cases, the integrity of a system can be confirmed during and
after the development process. Additionally, unit testing can be a critical part of regression
testing, allowing developers to quickly see if new code changes cause bugs or failed unit tests
inside other components. This allows these developers to easily see if their changes alter
previous fixes or versions of the code, and update the changes accordingly.

To ensure the integrity of the DendroDoggie application, the team has decided to employ
the standard and widely used “JUnit” testing framework to test our software. Junit is the most
commonly used Java testing framework on GitHub, and is consistently worked on and updated to
provide the most testing tools possible. JUnit also can be used extremely easily within the
Android Studio build process, by integrating the library with the gradle file. You are able to
customize the test implementation runner within the build.gradle file, and simply adding JUnit
there ensures that testing is properly integrated with your development process.

JUnit contains all of the expected test cases, including an initial setup of variables and
environment, assertions, mocking and stubbing, test runners for suites and classes, and teardown
- to name a few important functions. With these functionalities we will be able to thoroughly test
the most important pieces of our software to ensure that everything works as expected, and
continues to work as expected as future developers maintain it.

Over the following section, we will describe what classes we are testing and why, and go into
specifics of testing inputs for the functions we want to have coverage of, setup requirements, and
potential edge cases.

● pars.java
○ Because this class is used to parse the information that we receive from the

dendrometer and other TOMST devices, this class is a critical piece of the core
software that needs testing.

○ copyInt: inputs should be a string with an integer the length of two characters
inside it at a given start point. Example: “12345678” starting at 0 with a count of
2 should return 12.

○ copyIntGTM: should be capable of handling the same input as copyInt, but
additionally should handle hex values, and edge cases for negative UTC offset
values. Anything over 0x80 should be subtracted from 0x80 and negated. For



example, “A8” should return -28, because 0xA8 - 0x80 = 40, and 40 to decimal is
28.

○ copyHex: Similar to the above functions, if the string is “A8” this one should
return 168 as expected in hex.

○ dissasembleDate: This function uses the previous functions inside of it, and needs
a class to be set up and initialized before testing. This should be tested with edge
cases for the UTC offset, and normally expected values.

○ disassembleData: A class also needs to be set up and initialized for this function,
and the inputs should contain both “ADC” and no “ADC” inside the input string
for full coverage of the function. An assertion of all individual class values
populated from the return will be run.

● CSVFile.java
○ The CSVFile class resides in the application’s backend, and provides a simplified

interface for changing the contents of files, as well as adding, removing, copying,
and transforming files for the programmer

○ toParallel: should accept a merged file which is in the “serial” format - where
dendrometer data is listed one after the other - and restructure the data to be in
“parallel” - where data for each dendrometer is separated into columns (i.e. there
are N points of data on one line - where N refers to the number of dendrometers in
the file for which data exists).

○ toSerial: should accept a merged file which is in the aforementioned “parallel”
format and restructure the data to be in the aforementioned “serial” format

● GraphFragment.java
○ The GraphFragment class is responsible for implementing the functionality the

users need to visualize and manipulate data. This class is a critical component of
the user interface, and is the main piece with which the user will interact.

○ DisplayData: this function does not accept any parameter; however, the function
works with data previously constructed by the loadCSVFile function. This
function must be able to parse N collections of data from N dendrometers - where
N communicates the number of data sets from a dendrometer contained within a
file. More specifically, this function needs to be able to identify and extract each
piece of data - differentiating between data from temperature sensors, humidity
sensor, growth sensors, etc. - and organize the data into a structure which the chart
can use to visualize data for the user. Testing this would entail processing some
mock data, and then asserting the pieces of the charting structure are what is
expected.

○ loadCSVFile: should accept a file path, and be able to load the contained data into
memory for further processing and/or visualization. The function should be able
to handle files with a single data set and merged files. The function should be able
to keep track of which data belongs to which dendrometer. Testing this function



would require asserting the filled data structures have the expected data and the
expected organization.

○ processLine: should be able to parse a line read from a data set file. The function
should be able to identify if the line contains a serial number; otherwise, the
function should be able to extract temperature, humidity, and growth data the
device collected. The function should be device agnostic which would allow for
our clients, and other users by extension, to visualize data from any of TOMST’s
devices.

○ mergeCSVFile: should accept an array of file names and compile the data set(s)
from each file into one file - known as a merged file. The function must apply a
header which contains the number of data sets, the serial numbers of the
dendrometers’ data contained within, as well as each dendrometer’s latitude and
longitudinal position. The function should also be able to merge data from a
merged file with other, single data set files, and other, merged files. An example:
if the user already has a merged file with 3 data sets in it, and wants to merge it
with a file with a single data set, then the resulting file would count “4” data sets,
list the 4 dendrometers, as well as contain the data for each dendrometer present
in the source files. If the user has two merged files - one has 3 data sets, and the
other has 4 data sets - the resulting file would count “7” data sets, and contain the
data present in the files which were merged.

○ LoadDmdData: does not accept any parameters; however, the functionality
through which the user can visualize data as they collect data from the
dendrometer. Therefore, it is imperative the function can parse data - coming from
the dendrometer - and put the data somewhere from which it can be changed and
saved. So, the function needs to be able to access and read data from the
dendrometer - passed through the DmdViewModel by the HomeFragment - and
parse the data, then collect the data into a construct which can be visualized, and
finally convert the construct into an object which the chart can use to visualize.

● ListFragment.java:
○ This class is responsible for updating the list that resides in the File Viewer page

of the application. Some of the functionality within this class is responsible for
reading and writing the csv files to the cloud. The class also handles the
initialization of merging csv files into one csv file. In order to initially populate
the list the class will pull files from the device and the cloud.

○ loadAllFiles: This function will take all the files that are stored on the device and
populate the list with them. The function should be able to take the list of files on
the device, fFriends, and create an adapter with it. Then it will take that adapter
and set it for the list view. In order to test this we would need to check if fFriends
has the correct csv files. We would test this against the known list of csv files on
the device.



○ loadFromStorage: This function should be able to take all the necessary csv files
from the cloud and load them into the list view. It will do this by going through
each csv file on the cloud. Then for each file it will check if the current user is in
the list of users that has access to the file. The list of users with access is stored in
the metadata of the file. If the current user has access to the csv file, it will
download the file by calling the downloadCSVFile function. This will add the file
to fFriends and the function will then update the list view with this new fFriends
by setting a new adapter for the list view. In order to test this functionality we will
check if the current user is actually part of the user access list. The test will also
include checking if the pulled file from the cloud is in the fFriends list.

○ downloadCSVFile: This is a fairly simple function that will take in the file name
and file path. It will then pull the file from the cloud based on the file name input.
Then for this file it will download it to the path that got inputted. To test this
function all we have to do is check if the file is in fFriends.

○ uploadDataToStorage: This function is responsible for uploading csv files to the
cloud. The function will take all the files that are selected and go through each
one. To get the selected files it will check the selected flag for each file in
fFriends. For each file, the function will upload it to the Files folder in the cloud.
After a successful upload, the function will update the metadata to include the
user who uploaded the file in the file access list. There are two things to test here,
if the file got uploaded and if the metadata got updated. To test if the file got
uploaded, we would go through the files in the cloud, and check if the file is in
there. Then if we do find the file, check if the metadata includes the user who
uploaded the file.

○ updateMetadata: This function gets called from the shareData function. If a user
clicks share and inputs email addresses, the shareData function will then call
updateMetadata. The updateMetadata function is responsible for adding users to
the file access list. The function will take in an array of emails and go through
each selected csv file. Then for each file, the function will go through each
inputted email and that email to the user list for the file. This allows users to share
files with each other. In order to test this, we would take the file that got updated
and check if all the emails got properly added to the access list.



Integration Testing

Integration testing is another crucial part of ensuring software works as expected and
even fulfills initially given software requirements. Unlike unit testing, this version of testing
works by comparing values that are passed between interfaces instead of focusing on the specific
assertions of function return values.

For example, if within one view of an Android application, you input your user
credentials and it takes you to a separate view with that user’s data, you want to ensure that the
credentials properly passed from one view to the other, and that the Android application went to
the intended view after checking the user’s input.

Integration testing in our Android application will be fairly straightforward, as we only
have a few interfaces that we need to test proper flow and data passing. For our tests, we are
going to use an emulated environment present on Android Studio, and use the robust logging and
debug system to ensure that all components are thoroughly examined and meet our defined
requirements.

● For our first integration test, we will be analyzing the relationship between the file
selection view and the graph visualization view, and the process of passing large amounts
of data between these views. It is important that the data is the same between views, and
that the application is capable of handling several use cases and functional requirement
metrics.

○ Preparing the test data: First our emulator needs to have the required test datasets
present on the device. There will be four datasets that are examined: one large
dataset with 50,000 entries and a header, one small dataset with 1,000 entries and
a header, one dataset with 1,000 entries with no header/metadata information, and
two datasets that will be merged during the selection/viewing process: the 50,000
and 1,000 datasets will be merged together with the appropriate header
information to distinguish them. The first three datasets need to be created and
placed in the emulator’s internal storage. The fourth will be created during
runtime.

○ Setting up metrics: For this test we will be using the logging system and
appropriate tags inside Android Studio to ensure metrics are met manually. For
this integration test we need to be certain that serial numbers given by the datasets
are properly passed, the actual data is properly passed, and the time taken for
loading/passing each dataset is measured. To do this, serial numbers will be
logged in the graph visualization view, the 100th (40,000th for the large sets) data
points will be logged in the graph visualization view, and the time of execution
for both views will be logged. Comparisons will be made afterwards.



○ Executing the tests and monitoring the results: Inside the emulator - after setting
up the environment - the tester will select the datasets and execute them in the
order provided above. First the user will test the 1,000 entry dataset and monitor
the logs for the given metrics, then the 50,000 entry dataset, then the 1,000 entry
dataset with no header, and finally the user will select the 1,000 and 50,000
datasets, which will be merged during runtime.

○ Reporting and analyzing results: The serial numbers in the graph visualization
view will be compared to the CSV file’s serial number to see that they are equal,
the selected data points will be compared in the graph visualization view against
the CSV file’s data points to see that they are equal, and the difference between
times between views will be compared against a given value. If these values are
all correct, then this integration test is good to be signed off.

● For this integration test, we will analyze the flow between log in view and the options
view. We will look at if the user data is getting properly passed between the two views. It
is important that the correct user information is getting passed as we don’t want to
distribute the incorrect information. Also important to make sure that data is actually
being passed between the two views.

○ Preparing the test data: For the data we will use three different users. Each user
will have a different email and password. There is no data that needs to be added
to the emulator itself.

○ Setting up metrics: For the actual test, we will use the logging functionality inside
of Android Studio. For this test, we need to make sure that the user id that logs in
is the same user id that gets passed to the options view. When user information is
inputted into the login form, we will log the user id associated with that user.
Then when the user logs in, we will then log the user id that was logged in. The
final log will happen when the user enters the options view. Here we will log the
user id that is being read.

○ Executing the tests and monitoring the results: After everything is set up, inside of
the emulator the tester will be able to start the test. First the tester will take login
info for user 1, and input them into the login form. At this point, the tester should
be able to see the user id displayed in the log. After clicking login, once again the
tester will look at the log and see the user id displayed. Then the tester will move
to the options page and look at the log and see the user id displayed. The tester
will repeat these steps for the other two users.

○ Reporting and analyzing results: The three different user id’s displayed during the
test will be compared to the known user id for each of the three users. If the user
id’s match, then we can confirm that the integration between the two views is
working correctly. If there is any discrepancy, then we can further test to find the
problem.





Usability Testing

Usability testing is the final piece of testing that a good piece of software should
implement. This testing ensures that the actual end product meets the usability requirements set
out before it during the requirements acquisition phase, and that the software is actually usable.
If the application is extremely non-intuitive, then no matter how functional the application
actually is, users will have no idea how to access that functionality. This is why usability testing
is so helpful: it helps the development team see exactly what where users struggle with the
interface of the application.

For our Android application, the usability testing that we will implement is user testing.
We luckily have access to the four main users of our application, and so we are able to watch
them perform several steps of the applications workflow, and precisely see where they falter or
where the interface is unclear. We can then use this information to make our UI/UX better and
more tuned to our clients' thought processes. The four users of our application are members of
the NAU ECOSS, and prominent researchers in the environmental science field, and will be the
main users of this application. They are Andrew Richardson, Mariah Carbone, George Koch, and
Austin Simonpietri.

● The workflows that we want to test with the users are the most critical pieces of our
software. We only have a few key workflows and processes in our application, and so it is
critical to us that these are as intuitive as possible. The following workflows are the
workflows we will be testing with our users:

○ Data reading: downloading data is a key workflow for our Android application,
and therefore needs to be thoroughly vetted before releasing to production. This
workflow from a top-level point of view goes as follows: the user may select
options to dial in the downloading, then the user plugs in a TMD adapter,
approves permissions, and plugs the device in until it is downloaded. For each of
these pieces of the workflow, the application must be very usable and intuitive, or
else users are not capable of comfortably using the most important function of the
application. Therefore, our application will ensure that following tests and
requirements are followed and met during the usability test:

■ Step one: user selects download options:
● The user should be able to clearly see where to navigate within the

application to find the download options. The options themselves
must be short, clear, and self-explanatory for a typical user of the
application. The following are selections from worst to best for
finding the options menu:

○ “I could not find where the button was located on the
screen”



○ “I know to use the navigational menu, but the button was
hard or indistinguishable from other buttons”

○ “I found where the button was, but the icon could better
communicate”

○ “I was able to navigate to the options screen”
● The following are selections from worst to best for selecting the

options:
○ “I did not know what any of the options were for”
○ “I was able to intuit what a few of the options were for”
○ “Most, if not all, options were clear and well-described”

■ Step two: downloading data
● The user should be able to navigate back to the home view from

the options menu, and that will be judged by the same navigation
test above. The application should clearly state next steps for
downloading, and accurately describe the permissions required for
the app. The application should additionally present useful
information when downloading data. The following selections
from worst to best will determine results of this section’s usability:

○ “I was unable to determine what to do next to download
data”

○ “It was clear to me what the next step would be to
download data”

● The following selections from worst to best will determine results
of this section’s usability:

○ “No useful data was presented to me during the download”
○ “There was some data presented during the download, but

not all of it was useful, or some was missing”
○ “All of the data presented during the download was useful,

and none was missing”
○ Viewing data: The visualization of data is the most critical module of our

application. This process must be completed with extreme precision to ensure that
users are obtaining data that is completely consistent with the original
dendrometer readings. The graphs created from our charting library should be
navigable, simple, and efficient. Efficiency of a graph relates to the productivity
and convenience it supplies to a user. Users should easily obtain valuable data
quickly proceeding the rendering of the graph. This process is very simple and
only requires 3 ‘clicks’. The following steps will be performed for usability
testing of the visualization of data in our application:

● Precondition: User has CSV file stored on device in documents
folder



■ Step one: user navigates to ‘file viewer’ tab
● The user should be able to intuit which button in the navigation

menu will take them to the aforementioned page; it is crucial the
icon communicate this; therefore, from worst to best, the following
statements outline the experience for finding the button:

○ “I could not find where the button was located on the
screen”

○ “I know to use the navigational menu, but the button was
hard or indistinguishable from other buttons”

○ “I found where the button was, but the icon could better
communicate”

○ “I was able to navigate to the file selection screen”
■ Step two: User selects a csv file to visualize

● The user should have the ability to easily select/deselect any of the
files. The following statements list possible experiences for
selecting/deselecting datasets:

○ “I could not find my csv files in the application”
○ “I am stuck on how to select a file”
○ “I am able to select a file, but cannot deselect it”
○ “Files are easily selected and deselected”

■ Step three: user finalizes selection, and device visualizes the data.
● The user should be able to go straight to the button to finalize their

selection and display the csv file; it is important the button be
obvious and communicate its function for new and returning users;
therefore, from worst to best, the following statements outline the
experience for finalizing file selection:

○ “I could not find the button to finalize selection”
○ “I found the button to finalize my selection, but it took

some time to figure out which button performed this
function”

○ “I knew pretty much instantly which button to press to
perform the visualization”

○ Merging data: merging data sets should be a straightforward process which only
requires the user to follow two or three steps with each step only taking a few
seconds to a minute. By definition, this process is intuitive for the user, and allows
them to get to visualizing and reviewing data as quickly as possible. Therefore,
when testing, the user should be able to complete this step in 2 minutes - allowing
for time to choose data sets; there user should be able to intuit how to select data
sets to merge, and be able to find the button to visualize with ease. Therefore, the



following steps will outline the tests which need to be met, as well as the degrees
for success to communicate which aspects of the process must be improved.

■ Step one: user moves to the file selection page
● The user should be able to intuit which button in the navigation

menu will take them to the aforementioned page; it is crucial the
icon communicate this; therefore, from worst to best, the following
statements outline the experience for finding the button:

○ “I could not find where the button was located on the
screen”

○ “I know to use the navigational menu, but the button was
hard or indistinguishable from other buttons”

○ “I found where the button was, but the icon could better
communicate”

○ “I was able to navigate to the file selection screen”
■ Step two: user selected a number of files to merge

● The user should be able to begin the process of selecting files; it is
very important the user understand which files will be merged and
which files will not be merged; therefore, from worst to best, the
following statements outline the experience for selecting files:

○ “I got stuck trying to select files to merge”
○ “I could select two or more files, but I need an indicator of

which files will be merged”
○ “I was able to select and deselect the files I wanted and did

not want to merge”
■ Step three: user finalizes selection, and the phone is able to visualize the

data
● The user should be able to go straight to the button to finalize their

selection and merge the files; it is important the button be obvious
and communicate its function for new and returning users;
therefore, from worst to best, the following statements outline the
experience for finalizing file selection:

○ “I could not find the button to finalize and merge the
selected files”

○ “I found the button to finalize and merge, but it took some
time to figure out which button performed this function”

○ “I was able to find the button to finalize and merge the
selected files, and visualize the data”

○ Exporting data to the cloud: Being able to export data to the cloud is a key piece
of the workflow. This allows users to share data easily across any device. This
should be a very simple and quick process. The high-level overview of this would



first be the user navigating the file viewer page. Then the user should be able to
select any amount of files that they want to upload to the cloud. Once selected, the
user should be able to press the upload button, allowing the files to be uploaded to
the cloud. The following tests will be performed to complete the usability testing
for exporting data to the cloud.

■ Step one: user navigates to file viewer page
● The user should be able to tell what button on the bottom

navigation will lead to the file viewer page. The following
statements outline the experience in navigation to the file viewer
page:

○ “I could not find where the button was located on the
screen”

○ “I know to use the navigational menu, but the button was
hard or indistinguishable from other buttons”

○ “I found where the button was, but the icon could better
communicate”

○ “I was able to navigate to the file viewer page”
■ Step two: user selects file(s)

● The user should be able to tell how to select files. They should also
be aware that they are choosing files to be uploaded to the cloud.
The following statements outline the experience in selecting files
to upload:

○ “I got stuck trying to select files to upload”
○ “I could select one or more files, but I need an indicator of

which files will be uploaded”
○ “I was able to select and deselect the files I wanted in order

to upload them”
■ Step three: user presses upload button and files get uploaded

● The user should easily be able to recognize how to upload the
selected files. The following statements outline the experience in
selecting files to upload:

○ “I was not able to figure out how to upload selected files”
○ “I was able to find the upload to cloud button but could not

upload the selected files”
○ “I was able to find the upload to cloud button and upload

the selected files”
Timeline for Usability Testing:

● All four usability tests will be done at the same time, during one of our weekly meetings
towards the end of April with the four main users of our application: Andrew Richardson,
Mariah Carbone, George Koch, and Austin Simonpietri.



Conclusion

In conclusion, the testing efforts outlined for the DendroDoggie application have been
planned and designed to ensure reliability, functionality, and user satisfaction. Through a
combination of Unit, Integration, and Usability Testing, we cover all critical aspects of the
application's purpose.Unit Testing involves testing individual units or components of the
software to validate their functionality. We will do this by employing the widely-used JUnit
testing framework. We aim to thoroughly test critical components such as the pars.java,
CSVFile.java, GraphFragment.java, and ListFragment.java files. Specific test cases are designed
to cover various scenarios and edge cases to ensure robustness and reliability. Integration Testing
focuses on testing the interaction and data flow between different components or modules of the
application. Specifically, we will analyze critical workflows, such as file selection and graph
visualization, to ensure seamless user experience and data integrity. Usability Testing serves to
assess the intuitiveness of the application's interface. By observing the feedback from real users
interacting with the application, we identify necessary areas of improvement. We plan to instruct
our clients to complete basic application tasks such as data reading, viewing, merging, and
exporting to the cloud. Given our application’s role in providing precise and critical
environmental data, rigorous testing is an essential process to complete before releasing our
application to the public. DendroDawgz continuously aims to supply its users with high-quality
and reliable software.


